Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Prostate ; 84(8): 717-722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450787

RESUMEN

INTRODUCTION: The Society of Nuclear Medicine and Molecular Imaging (SNMMI) provides appropriate use criteria (AUC) for prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) which include guidance on imaging in newly diagnosed prostate cancer and in patients with biochemically recurrent (BCR) disease. This study aims to examine trends in PSMA implementation and the prevalence and outcomes of scans ordered in scenarios deemed rarely appropriate or not meeting SNMMI AUC. METHODS: We retrospectively identified patients who were diagnosed with presumptive National Comprehensive Cancer Network unfavorable intermediate, high, or very high risk prostate cancer, patients who underwent staging for BCR, and all patients staged with PSMA between July 2021 and March 2023. Positivity was validated by adherence to a predetermined reference standard. RESULTS: The frequency of PSMA use increased in initial staging from 24% to 80% and work-up of BCR from 91% to 99% over our study period. In addition, 5% (17/340) of PSMA scans ordered for initial staging did not meet AUC and 3% (15/557) of posttreatment scans were deemed rarely appropriate. Initial staging orders not meeting SNMMI AUC resulted in no positivity (0/17), while rarely appropriate posttreatment scans were falsely positive in 75% (3/4) of cases. Urologists (53%, 17/32) comprised the largest ordering specialty in rarely appropriate use. CONCLUSION: The frequency of PSMA use rose across the study period. A significant minority of patients received PSMA PET/CT in rarely appropriate scenarios yielding no positivity in initial staging and significant false positivity post-therapy. Further education of providers and electronic medical record-based interventions could help limit the rarely appropriate use of PET imaging.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Humanos , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/normas , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Estudios Retrospectivos , Anciano , Persona de Mediana Edad , Estadificación de Neoplasias , Medicina Nuclear/métodos , Antígenos de Superficie/análisis , Glutamato Carboxipeptidasa II/metabolismo , Imagen Molecular/métodos , Imagen Molecular/normas
2.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838896

RESUMEN

Cell membrane (CM) is a phospholipid bilayer that maintains integrity of a whole cell and relates to many physiological and pathological processes. Developing CM imaging tools is a feasible method for visualizing membrane-related events. In recent decades, small-molecular fluorescent probes in the near-infrared (NIR) region have been pursued extensively for CM staining to investigate its functions and related events. In this review, we summarize development of such probes from the aspect of design principles, CM-targeting mechanisms and biological applications. Moreover, at the end of this review, the challenges and future research directions in designing NIR CM-targeting probes are discussed. This review indicates that more efforts are required to design activatable NIR CM-targeting probes, easily prepared and biocompatible probes with long retention time regarding CM, super-resolution imaging probes for monitoring CM nanoscale organization and multifunctional probes with imaging and phototherapy effects.


Asunto(s)
Colorantes Fluorescentes , Espectroscopía Infrarroja Corta , Colorantes Fluorescentes/metabolismo , Espectroscopía Infrarroja Corta/métodos , Imagen Molecular/métodos , Imagen Óptica , Membrana Celular/metabolismo
3.
Nat Commun ; 14(1): 1062, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828835

RESUMEN

To date, a biopsy is mandatory to evaluate parenchymal inflammation in the liver. Here, we evaluated whether molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) could be used as an alternative non-invasive tool to detect liver inflammation in the setting of chronic liver disease. To do so, we radiolabeled anti-VCAM-1 nanobody (99mTc-cAbVCAM1-5) and used single-photon emission computed tomography (SPECT) to quantify liver uptake in preclinical models of non-alcoholic fatty liver disease (NAFLD) with various degree of liver inflammation: wild-type mice fed a normal or high-fat diet (HFD), FOZ fed a HFD and C57BL6/J fed a choline-deficient or -supplemented HFD. 99mTc-cAbVCAM1-5 uptake strongly correlates with liver histological inflammatory score and with molecular inflammatory markers. The diagnostic power to detect any degree of liver inflammation is excellent (AUROC 0.85-0.99). These data build the rationale to investigate 99mTc-cAbVCAM1-5 imaging to detect liver inflammation in patients with NAFLD, a largely unmet medical need.


Asunto(s)
Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Hígado/metabolismo , Hepatitis/patología , Inflamación/patología , Imagen Molecular/métodos , Dieta Alta en Grasa , Ratones Endogámicos C57BL
4.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209227

RESUMEN

Phenotypical screening is a widely used approach in drug discovery for the identification of small molecules with cellular activities. However, functional annotation of identified hits often poses a challenge. The development of small molecules with narrow or exclusive target selectivity such as chemical probes and chemogenomic (CG) libraries, greatly diminishes this challenge, but non-specific effects caused by compound toxicity or interference with basic cellular functions still pose a problem to associate phenotypic readouts with molecular targets. Hence, each compound should ideally be comprehensively characterized regarding its effects on general cell functions. Here, we report an optimized live-cell multiplexed assay that classifies cells based on nuclear morphology, presenting an excellent indicator for cellular responses such as early apoptosis and necrosis. This basic readout in combination with the detection of other general cell damaging activities of small molecules such as changes in cytoskeletal morphology, cell cycle and mitochondrial health provides a comprehensive time-dependent characterization of the effect of small molecules on cellular health in a single experiment. The developed high-content assay offers multi-dimensional comprehensive characterization that can be used to delineate generic effects regarding cell functions and cell viability, allowing an assessment of compound suitability for subsequent detailed phenotypic and mechanistic studies.


Asunto(s)
Descubrimiento de Drogas/métodos , Genómica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Imagen Molecular/métodos , Bibliotecas de Moléculas Pequeñas , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Humanos , Reproducibilidad de los Resultados , Coloración y Etiquetado
5.
J Am Soc Mass Spectrom ; 32(12): 2791-2802, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767352

RESUMEN

A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.


Asunto(s)
Espectrometría de Masas/métodos , Imagen Molecular/métodos , Infecciones por Salmonella/diagnóstico por imagen , Infecciones por Salmonella/microbiología , Salmonella typhimurium/química , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
6.
J Am Soc Mass Spectrom ; 32(9): 2490-2494, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34374553

RESUMEN

Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is an emerging method that has the potential to transform the field of metabolomics. This is in part due to LAESI-MS being an ambient ionization method that requires minimal sample preparation and uses (endogenous) water for in situ analysis. This application note details the employment of the "LAESI microscope" source to perform spatially resolved MS analysis of cells and MS imaging (MSI) of tissues at high spatial resolution. This source configuration utilizes a long-working-distance reflective objective that permits both visualization of the sample and a smaller LAESI laser beam profile than conventional LAESI setups. Here, we analyzed 200 single cells of Allium cepa (red onion) and imaged Fittonia argyroneura (nerve plant) in high spatial resolution using this source coupled to a Fourier transform mass spectrometer for high-mass-resolution and high-mass-accuracy metabolomics.


Asunto(s)
Metabolómica/métodos , Imagen Molecular/métodos , Análisis de la Célula Individual/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Procesamiento de Imagen Asistido por Computador , Cebollas/citología , Cebollas/metabolismo
7.
J Am Soc Mass Spectrom ; 32(10): 2519-2527, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34435768

RESUMEN

We demonstrate the utility of combining silicon nanopost arrays (NAPA) and trapped ion mobility imaging mass spectrometry (TIMS IMS) for high spatial resolution and specificity mapping of neutral lipid classes in tissue. Ionization of neutral lipid species such as triglycerides (TGs), cholestryl esters (CEs), and hexosylceramides (HexCers) from biological tissues has remained a challenge for imaging applications. NAPA, a matrix-free laser desorption ionization substrate, provides enhanced ionization efficiency for the above-mentioned neutral lipid species, providing complementary lipid coverage to matrix-assisted laser desorption ionization (MALDI). The combination of NAPA and TIMS IMS enables imaging of neutral lipid species at 20 µm spatial resolution while also increasing molecular coverage greater than 2-fold using gas-phase ion mobility separations. This is a significant improvement with respect to sensitivity, specificity, and spatial resolution compared to previously reported imaging studies using NAPA alone. Improved specificity for neutral lipid analysis using TIMS IMS was shown using rat kidney tissue to separate TGs, CEs, HexCers, and phospholipids into distinct ion mobility trendlines. Further, this technology allowed for the separation of isomeric species, including mobility resolved isomers of Cer(d42:2) (m/z 686.585) with distinct spatial localizations measured in rat kidney tissue section.


Asunto(s)
Lípidos/análisis , Imagen Molecular/métodos , Nanoestructuras/química , Silicio/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Encéfalo/diagnóstico por imagen , Química Encefálica/fisiología , Isomerismo , Riñón/química , Riñón/diagnóstico por imagen , Lípidos/química , Ratas
8.
Sci Rep ; 11(1): 10400, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34002008

RESUMEN

The lateral hypothalamus (LH) is critically involved in the regulation of homeostatic energy balance. Some neurons in the LH express receptors for leptin (LepRb), a hormone known to increase energy expenditure and decrease energy intake. However, the neuroanatomical inputs to LepRb-expressing LH neurons remain unknown. We used rabies virus tracing technology to map these inputs, but encountered non-specific tracing. To optimize this technology for a minor cell population (LepRb is not ubiquitously expressed in LH), we used LepRb-Cre mice and assessed how different titers of the avian tumor virus receptor A (TVA) helper virus affected rabies tracing efficiency and specificity. We found that rabies expression is dependent on TVA receptor expression, and that leakiness of TVA receptors is dependent on the titer of TVA virus used. We concluded that a titer of 1.0-3.0 × 107 genomic copies per µl of the TVA virus is optimal for rabies tracing. Next, we successfully applied modified rabies virus tracing technology to map inputs to LepRb-expressing LH neurons. We discovered that other neurons in the LH itself, the periventricular hypothalamic nucleus (Pe), the posterior hypothalamic nucleus (PH), the bed nucleus of the stria terminalis (BNST), and the paraventricular hypothalamic nucleus (PVN) are the most prominent input areas to LepRb-expressing LH neurons.


Asunto(s)
Conectoma/métodos , Hipotálamo/diagnóstico por imagen , Imagen Molecular/métodos , Neuronas/metabolismo , Receptores de Leptina/análisis , Animales , Proteínas Aviares/genética , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Virus Helper/genética , Hipotálamo/citología , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Virus de la Rabia/genética , Receptores de Leptina/metabolismo , Receptores Virales/genética , Núcleos Septales/citología , Núcleos Septales/diagnóstico por imagen , Núcleos Septales/metabolismo , Técnicas Estereotáxicas
9.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924276

RESUMEN

An increase of oxygen saturation within blood bags and metabolic dysregulation occur during storage of red blood cells (RBCs). It leads to the gradual exhaustion of RBC antioxidant protective system and, consequently, to a deleterious state of oxidative stress that plays a major role in the apparition of the so-called storage lesions. The present study describes the use of a test (called TSOX) based on fluorescence and label-free morphology readouts to simply and quickly evaluate the oxidant and antioxidant properties of various compounds in controlled conditions. Here, TSOX was applied to RBCs treated with four antioxidants (ascorbic acid, uric acid, trolox and resveratrol) and three oxidants (AAPH, diamide and H2O2) at different concentrations. Two complementary readouts were chosen: first, where ROS generation was quantified using DCFH-DA fluorescent probe, and second, based on digital holographic microscopy that measures morphology alterations. All oxidants produced an increase of fluorescence, whereas H2O2 did not visibly impact the RBC morphology. Significant protection was observed in three out of four of the added molecules. Of note, resveratrol induced diamond-shape "Tirocytes". The assay design was selected to be flexible, as well as compatible with high-throughput screening. In future experiments, the TSOX will serve to screen chemical libraries and probe molecules that could be added to the additive solution for RBCs storage.


Asunto(s)
Eritrocitos/metabolismo , Microscopía Fluorescente , Imagen Molecular , Oxidantes/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Descubrimiento de Drogas , Eritrocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Flujo de Trabajo
10.
Biomed Chromatogr ; 35(9): e5140, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33830528

RESUMEN

Owing to the complexity of the composition of herbal and dietary supplements, it is a challenging problem to efficiently screen and identify active or toxic compounds. Psoralea corylifolia L. (PCL) was selected as the subbject to establish a methodology for rapid screening and identification of hepatotoxic compounds. High-content imaging, ultra-performance liquid chromatography and high-resolution mass spectrometry were used in this study to detect the hepatotoxicity and identify unknown compounds in PCL samples. Then, putative toxic compounds which are highly related to hepatotoxicity were screened by spectrum-toxicity correlation analysis, and the toxicity intensity verified by high-content imaging. The maximum nontoxic dose of processed samples with good detoxification effect reduced more than 9 times compared with unprocessed raw medicinal materials. Spectrum-toxicity correlation analysis showed that bavachinin A, bavachin, isobavachalcone and neobavaisoflavone had high correlation with the hepatotoxicity of PCL, and psoralen and isopsoralen had low correlation with hepatotoxicity. This study verified the hepatotoxicity of these six putative compound monomers, proving the results of spectrum-toxicity correlation analysis. Based on the correlation analysis of high-resolution mass spectrometry of detection compounds and high-content imaging of hepatocyte toxicity data, the potential toxic compound of herbal and dietary supplement products can be quickly and accurately screened.


Asunto(s)
Suplementos Dietéticos/toxicidad , Medicamentos Herbarios Chinos/toxicidad , Hepatocitos/efectos de los fármacos , Psoralea/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ficusina/toxicidad , Flavonoides/toxicidad , Humanos , Isoflavonas/toxicidad , Espectrometría de Masas/métodos , Imagen Molecular/métodos
11.
J Fluoresc ; 31(3): 763-774, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33655457

RESUMEN

Carbon quantum dots (CQD) as the result of their exceptional physical and chemical properties show tremendous potential in various field of applications like cell imaging and doping of CQDs with elements like nitrogen and phosphorous increase its fluorescence property. Herein, we have synthesized fluorescent nitrogen and phosphorous codoped carbon quantum dots (NPCQDs) via a one-pot hydrothermal method. Sesame oil, L-Aspartic acid, and phosphoric acid were used as carbon, nitrogen, and phosphorous sources, respectively. UV-Vis spectrophotometer, fluorescence spectrometer, Fourier transform infrared spectrometer (FTIR), X-ray diffraction spectrometer (XRD), field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM) were employed to characterize the synthesized fluorescent NPCQDs. The as-synthesized NPCQDs with a particle size of 4.7 nm possess excellent water solubility, high fluorescence with high quantum yield (46%), high ionic stability, and resistance to photobleaching. MTT assay indicated the biocompatibility of NPCQDs and it was used for multicolor live-cell imaging. Besides, the NPCQDs show an effective probe of iron ions (Fe3+) in an aqueous solution with a high degree of sensitivity and selectivity. The DPPH assay showed its good antioxidant activity.


Asunto(s)
Carbono/química , Cobalto/química , Hierro/análisis , Imagen Molecular/métodos , Nitrógeno/química , Fósforo/química , Puntos Cuánticos/química , Antioxidantes/química , Antioxidantes/farmacología , Supervivencia Celular , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química
12.
Molecules ; 26(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499348

RESUMEN

Mass spectrometry-based molecular imaging has been utilized to map the spatial distribution of target metabolites in various matrixes. Among the diverse mass spectrometry techniques, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is the most popular for molecular imaging due to its powerful spatial resolution. This unparalleled high resolution, however, can paradoxically act as a bottleneck when the bio-imaging of large areas, such as a whole plant, is required. To address this issue and provide a more versatile tool for large scale bio-imaging, direct analysis in real-time-time of flight-mass spectrometry (DART-TOF-MS), an ambient ionization MS, was applied to whole plant bio-imaging of a medicinal plant, Ephedrae Herba. The whole aerial part of the plant was cut into 10-20 cm long pieces, and each part was further cut longitudinally to compare the contents of major ephedra alkaloids between the outer surface and inner part of the stem. Using optimized DART-TOF-MS conditions, molecular imaging of major ephedra alkaloids of the whole aerial part of a single plant was successfully achieved. The concentration of alkaloids analyzed in this study was found to be higher on the inner section than the outer surface of stems. Moreover, side branches, which are used in traditional medicine, represented a far higher concentration of alkaloids than the main stem. In terms of the spatial metabolic distribution, the contents of alkaloids gradually decreased towards the end of branch tips. In this study, a fast and simple macro-scale MS imaging of the whole plant was successfully developed using DART-TOF-MS. This application on the localization of secondary metabolites in whole plants can provide an area of new research using ambient ionization mass spectroscopy and an unprecedented macro-scale view of the biosynthesis and distribution of active components in medicinal plants.


Asunto(s)
Alcaloides/metabolismo , Ephedra/metabolismo , Espectrometría de Masas/métodos , Plantas Medicinales/metabolismo , Efedrina/análogos & derivados , Efedrina/metabolismo , Espectrometría de Masas/instrumentación , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Componentes Aéreos de las Plantas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Molecules ; 27(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011330

RESUMEN

The design and structural frameworks for targeted drug delivery of medicinal compounds and improved cell imaging have been developed with several advantages. However, metal-organic frameworks (MOFs) are supplemented tremendously for medical uses with efficient efficacy. These MOFs are considered as an absolutely new class of porous materials, extensively used in drug delivery systems, cell imaging, and detecting the analytes, especially for cancer biomarkers, due to their excellent biocompatibility, easy functionalization, high storage capacity, and excellent biodegradability. While Zn-metal centers in MOFs have been found by enhanced efficient detection and improved drug delivery, these Zn-based MOFs have appeared to be safe as elucidated by different cytotoxicity assays for targeted drug delivery. On the other hand, the MOF-based heterogeneous catalyst is durable and can regenerate multiple times without losing activity. Therefore, as functional carriers for drug delivery, cell imaging, and chemosensory, MOFs' chemical composition and flexible porous structure allowed engineering to improve their medical formulation and functionality. This review summarizes the methodology for fabricating ultrasensitive and selective Zn-MOF-based sensors, as well as their application in early cancer diagnosis and therapy. This review also offers a systematic approach to understanding the development of MOFs as efficient drug carriers and provides new insights on their applications and limitations in utility with possible solutions.


Asunto(s)
Técnicas Biosensibles , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Estructuras Metalorgánicas/química , Imagen Molecular , Zinc/química , Animales , Técnicas de Química Sintética , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas del Metal , Estructuras Metalorgánicas/síntesis química , Estructuras Metalorgánicas/ultraestructura , Técnicas de Diagnóstico Molecular , Imagen Molecular/métodos
14.
Food Chem ; 334: 127586, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32707364

RESUMEN

It is unknown whether intestinal absorption of acylated anthocyanins occurs in their intact or metabolized form. In this study, with the aid of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging, intestinal absorption of acylated anthocyanins was visually investigated. Anthocyanin extracts from purple carrots were orally administered to Sprague-Dawley rats. Acylated cyanidins were absorbed into portal and circulating blood systems in their intact form, and aglycon; cyanidin 3-O-(6-O-feruloyl-ß-d-glucopyranosyl)-(1 â†’ 6)-[ß-d-xylopyranosyl-(1 â†’ 2)]-ß-d-galactopyranoside (Cy3XFGG), and showed a high absorption of 39.3 ± 0.1 pmol/mL-plasma at 60 min after administration. MALDI-MS imaging analysis of the rat jejunum membranes showed that an organic anion transporting polypeptide (OATP) transporter was involved in Cy3XFGG transport, while deacylated anthocyanins were incorporated through both the glucose transporter 2 and OATP routes. In conclusion, acylated anthocyanin, Cy3XFGG, can be absorbed in its intact form through intestinal OATP.


Asunto(s)
Antocianinas/análisis , Antocianinas/farmacocinética , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Acilación , Administración Oral , Animales , Antocianinas/administración & dosificación , Color , Daucus carota/química , Absorción Intestinal/efectos de los fármacos , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Masculino , Transportadores de Anión Orgánico/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacocinética , Ratas Sprague-Dawley
15.
Biochem Biophys Res Commun ; 534: 27-33, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310184

RESUMEN

Protein labeling with a functional molecule is a technique widely used for protein research. The covalent reaction of self-labeling peptide tags with synthetic probe-modified small molecules enables tag-fused protein labeling with chemically diverse molecules, including fluorescent probes. We report the discovery, by in vitro directed evolution, of a novel 23-mer dibenzocyclooctyne (DBCO)-reactive peptide (DRP) tag using Systematic Evolution of Ligands by EXponential enrichment (SELEX) with a combination of a reconstituted cell-free translation system (PURE system) and cDNA display. The N- and C-terminal DRP truncations created a shorter 16-mer DBCO-reactive peptide (sDRP) tag without significant reactivity reduction. By fusing the sDRP tag to a model protein, we showed the chemical labeling and in-gel fluorescence imaging of the sDRP-fused protein using a fluorescent DBCO probe. Results showed that sDRP tag-mediated protein labeling has potential for use as a basic molecular tool in a variety of applications for protein research.


Asunto(s)
Evolución Molecular Dirigida/métodos , Péptidos/química , Ciclooctanos/química , Ciclooctanos/metabolismo , Cisteína/química , ADN Complementario , Electroforesis en Gel de Poliacrilamida , Colorantes Fluorescentes/química , Imagen Molecular/métodos , Biblioteca de Péptidos , Péptidos/síntesis química , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/química
16.
J Mater Chem B ; 9(1): 101-111, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33232438

RESUMEN

Near infrared (NIR) light detonated phototherapy for cancer treatment based on photothermal therapy (PTT) and photodynamic therapy (PDT) has attracted increasing attention owing to its deep tissue penetration. However, the low absorption ability and therapeutic efficiency of the photosensitive drug have restricted the development of phototherapy to a great degree. Herein, a kind of IR808 dye sensitized glutathione (GSH) cladded Au-Bi bimetallic nanoparticles (Au-Bi-GSH@IR808) was prepared to enhance the inhibition effect of tumors. In this nanoplatform, the construction of GSH cladded Au-Bi bimetallic nanoparticles can effectively generate 1O2 while exhibiting outstanding photothermal conversion efficiency (η = 34.2%) upon 808 nm laser irradiation. Furthermore, IR808 as a small molecule dye endows the Au-Bi-GSH@IR808 with a higher 808 nm light absorption ability and stronger photothermal and photodynamic effects. The IR808 sensitized Au-Bi bimetallic nanoparticles with a small size (5 nm), hydrophilia and dispersible nature, exhibit a noticeably enhanced therapeutic peculiarity. Additionally, the prominent CT imaging property of Au-Bi-GSH@IR808 means it is expected to be used as a CT imaging contrast agent in clinical applications. The results of the in vitro and in vivo experiments indicate that the synthesized nanoparticles have an excellent ablation effect on cancer cells, and they are expected to be widely used in the accurate diagnosis and treatment of cancer.


Asunto(s)
Bismuto/metabolismo , Oro/metabolismo , Nanopartículas del Metal , Fotoquimioterapia/métodos , Fototerapia/métodos , Compuestos de Sulfhidrilo/metabolismo , Animales , Bismuto/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Oro/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Ratones , Imagen Molecular/métodos , Espectroscopía Infrarroja Corta/métodos , Compuestos de Sulfhidrilo/administración & dosificación
17.
Anal Chem ; 92(24): 16158-16169, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33217231

RESUMEN

Superfluous zinc ion (Zn2+) in living cells has been identified as a potential tumor biomarker for early cancer diagnosis and cancer progression monitoring. In this paper, we developed a novel carbon nanohorns/Pt nanoparticles/DNA (CNHs/Pt NPs/DNA) nanoplatform based on the clamped hybridization chain reaction (c-HCR) process for intracellular Zn2+ imaging and enhanced cooperative phototherapy of cancer cells. Cross-shaped DNAzyme (c-DNAzyme), hairpin DNA1, hairpin DNA2, and aptamer DNA were adsorbed onto the surfaces of CNHs/Pt NPs, and the fluorescence of carboxytetramethyl-rhodamine was also quenched. After entering the living cells, the c-DNAzyme was cleaved to output trigger DNA in the existence of intracellular Zn2+ and initiate the c-HCR process for fluorescence amplification. Compared with the single HCR process triggered by a single DNAzyme, the c-HCR process could further improve the amplification efficiency and sensitivity. In addition, such a nanoprobe possesses a catalysis-enhanced photodynamic effect by Pt NP generation of oxygen in a tumor microenvironment and increases the photothermal effect by loading of Pt NPs on CNHs, indicating that this is a promising biological method for cancer diagnosis and cancer cell therapy.


Asunto(s)
Carbono/química , ADN/química , Nanopartículas del Metal/química , Imagen Molecular/métodos , Fototerapia/métodos , Platino (Metal)/química , Zinc/metabolismo , Células HeLa , Humanos , Espacio Intracelular/metabolismo
18.
Anal Chem ; 92(22): 15169-15178, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33125850

RESUMEN

Versatile all-in-one nanoplatforms that inherently possess both diagnostic imaging and therapeutic capabilities are highly desirable for efficient tumor diagnosis and treatment. Herein, we have developed a novel core-shell multifunctional nanomaterial-based all-in-one nanoplatform composed of gold nanobipyramids@polydopamine (Au NBPs@PDA) and gold nanoclusters (Au NCs) for simultaneous in situ multilayer imaging of dual types of tumor biomarkers (using a single-wavelength excitation) with different intracellular spatial distributions and fluorescence-guided photothermal therapy. The competitive combination between target transmembrane glycoprotein mucin1 (MUC1) and its aptamer caused Au NCs (620 nm) labeled with MUC1 aptamer to detach from the surface of Au NBPs@PDA, turning on the red fluorescence. Meanwhile, the hybridization between microRNA-21 (miRNA-21) and its complementary single-stranded DNA triggered the green fluorescence of Au NCs (515 nm). Based on this, simultaneous in situ multilayer imaging of dual types of tumor biomarkers with different intracellular spatial distributions was achieved. In addition, the potential of Au NBPs@PDA/Au NCs was also confirmed by simultaneous multilayer in situ imaging within not only three cell lines (MCF-7, HepG2, and L02 cells) with different expression levels of MUC1 and miRNA-21 but also cancer cells treated with different inhibitors. Moreover, the remarkable photothermal properties of Au NBPs@PDA resulted in the more efficient killing of cancer cells, demonstrating the great promise of the all-in-one nanoplatform for accurate diagnosis and tumor therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Imagen Molecular/métodos , Nanoestructuras/química , Fototerapia , Nanomedicina Teranóstica/métodos , Línea Celular Tumoral , Humanos
19.
Theranostics ; 10(25): 11580-11594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052234

RESUMEN

Rationale: MQ1, a snake toxin which targets with high nanomolar affinity and absolute selectivity for the type 2 vasopressin receptor (V2R), is a drug candidate for renal diseases and a molecular probe for imaging cells or organs expressing V2R. Methods: MQ1's pharmacological properties were characterized and applied to a rat model of hyponatremia. Its PK/PD parameters were determined as well as its therapeutic index. Fluorescently and radioactively labeled MQ1 were chemically synthesized and associated with moderate loss of affinity. MQ1's dynamic biodistribution was monitored by positron emission tomography. Confocal imaging was used to observe the labeling of three cancer cell lines. Results: The inverse agonist property of MQ1 very efficiently prevented dDAVP-induced hyponatremia in rats with low nanomolar/kg doses and with a very large therapeutic index. PK (plasma MQ1 concentrations) and PD (diuresis) exhibited a parallel biphasic decrease. The dynamic biodistribution showed that MQ1 targets the kidneys and then exhibits a blood and kidney biphasic decrease. Whatever the approach used, we found a T1/2α between 0.9 and 3.8 h and a T1/2ß between 25 and 46 h and demonstrated that the kidneys were able to retain MQ1. Finally, the presence of functional V2R expressed at the membrane of cancer cells was, for the first time, demonstrated with a specific fluorescent ligand. Conclusion: As the most selective V2 binder, MQ1 is a new promising drug for aquaresis-related diseases and a molecular probe to visualize in vitro and in vivo V2R expressed physiologically or under pathological conditions.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Hiponatremia/tratamiento farmacológico , Receptores de Vasopresinas/metabolismo , Venenos de Serpiente/farmacología , Agua/metabolismo , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/uso terapéutico , Desamino Arginina Vasopresina/administración & dosificación , Diabetes Insípida Nefrogénica/tratamiento farmacológico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Hiponatremia/inducido químicamente , Hiponatremia/diagnóstico , Hiponatremia/metabolismo , Riñón/diagnóstico por imagen , Riñón/metabolismo , Masculino , Imagen Molecular/métodos , Tomografía de Emisión de Positrones , Ratas , Eliminación Renal/efectos de los fármacos , Venenos de Serpiente/uso terapéutico , Sodio/sangre , Distribución Tisular
20.
PLoS Comput Biol ; 16(9): e1008198, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32931495

RESUMEN

Calcium imaging with fluorescent protein sensors is widely used to record activity in neuronal populations. The transform between neural activity and calcium-related fluorescence involves nonlinearities and low-pass filtering, but the effects of the transformation on analyses of neural populations are not well understood. We compared neuronal spikes and fluorescence in matched neural populations in behaving mice. We report multiple discrepancies between analyses performed on the two types of data, including changes in single-neuron selectivity and population decoding. These were only partially resolved by spike inference algorithms applied to fluorescence. To model the relation between spiking and fluorescence we simultaneously recorded spikes and fluorescence from individual neurons. Using these recordings we developed a model transforming spike trains to synthetic-imaging data. The model recapitulated the differences in analyses. Our analysis highlights challenges in relating electrophysiology and imaging data, and suggests forward modeling as an effective way to understand differences between these data.


Asunto(s)
Calcio/metabolismo , Fenómenos Electrofisiológicos/fisiología , Modelos Neurológicos , Imagen Molecular/métodos , Neuronas , Potenciales de Acción/fisiología , Animales , Lóbulo Frontal/citología , Lóbulo Frontal/fisiología , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Imagen Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA